Online Assignment Questions

(Based on 30th and 31st March, 2020 Online Lectures)

1. Calculate the component of F^{*ik} in terms of **E** and **B**.

2. Show that $\partial^i F^{kl} + \partial^k F^{li} + \partial^l F^{ik} = 0$.

3. Obtain all the components of Minkowski Force and show that they can be generalised as $K^i = \frac{q}{c} F^{im} U_m$.

4. Obtain the relation $F_{ik}^* F^{ik} = -4\mathbf{E} \cdot \mathbf{B}$.

5. Calculate the Following Scalars :-

- a) $G^{ik}G_{ik}$
- b) $G_{ik}^* G^{ik}$
- c) $G^{ik}F_{ik}$
- d) $F^{ik}G^*_{ik}$
- e) $G_{ik}^* F^{*ik}$

6. Show that generalised momentum for a free particle $\mathbf{P} = \mathbf{p}_{rel}$.

7. Calculate the Hamiltonian **H** of the free particle by using the known value of generalised momentum **P** and Lagrangian **L** of the particle.

8. Find out the interaction part of the Lagrangian .i.e., L_{int} for a charged particle moving inside the EM field.

9. Obtain the Homogeneous Maxwell's equations $\partial_i F^{*ik} = 0$ from $\partial_i F^{ik} = \frac{4\pi}{c} J^k$.